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Similarity searching in large collections that use long vectors to represent objects is 
considered. A number of vector indexing techniques explicitly or implicitly involve the 
use of vectors whose elements approximate those of the vectors to be indexed. This paper 
presents a measure that, given one assumption, is suitable for judging the quality of 
approximations of vectors. If it is further assumed that the distributions of elements of 
each dimension are independent of those of other dimensions and that the distance 
measure preserves this independence, then it is possible to apply a related measure to the 
elements of each dimension independently of those in other dimensions. These measures 
are used in the design of a heuristic algorithm that creates approximations of vectors. 
The VA-file is modified to use approximations of vectors created using this algorithm, 
and its performance is evaluated. 
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trieval 

1. INTRODUCTION 

This paper discusses a method for improving the construction of 
approximations of vectors for use in conjunction with a number of 
indexing techniques used for similarity searching. The vectors under 
consideration are dense and long, typically with between about ten 
and a few hundred dimensions. 
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It is assumed that there is a large collection of objects and that 
searches are frequently conducted on this collection in order to find 
some number of objects that are similar to the given query objects. It is 
further assumed that the objects and the queries are represented using 
vectors, and that these vectors are compared using a similarity 
measure. This form of similarity searching is often called k-nearest 
neighbour searching. In this case, however, objects are thought of as 
being represented as points, and a distance measure is used to compare 
points. The terminology adopted here will be one of vectors and 
similarity, rather than one of points and distances. 

Similarity searching has a large and diverse set of applications. Of 
these only a subset use long dense vectors to represent objects. In text 
retrieval and text classification long sparse vectors used have tradi
tionally been used [35]. More recently, however, dimension reduction 
techniques have been employed in some systems to improve the quality 
of retrieval [15] and classification [44]. The vectors in these collections 
have between about 50 and 200 elements each, and are dense. Another 
range of applications result from the ability to represent shapes using 
vectors [36, 28]. The retrieval of shapes is useful in areas such as 
computer-aided design (CAD), geographical information systems 
(GIS), and robotic vision and movement [26, 6]. More complex one
and three-dimensional information may also by represented by long 
vectors through the use of histograms, Fourier transforms and various 
other methods. This leads to several applications in multimedia 
[19, 21, 31, 39], including the indexing of photographs, video, images of 
faces [40], medical images [30], and astronomical spectograms [13]. 
Similarity searching based on long dense vectors may also be 
performed on molecular sequences (e.g., DNA) [2, 16,43]. Other 
applications are knowledge discovery, data mining [18] and time series 
prediction and analysis (e.g., for financial market movements) [17, 1]. 
Furthermore, the k-nearest neighbour algorithm has long been used 
for classification [14] in areas such as optical character recognition 
(OCR) and speech recognition [5]. Finding vectors quickly is also 
useful for multivariate density estimation [38] (both when using the k
nearest neighbour density estimation technique and when using kernel 
density estimation), and in vector quantisation for data, which is 
mostly used for the compression of images and sound [23]. 

After presenting a number of existing indexing systems in Section 2, 
Section 3 suggests that for some indexing systems it is possible to 
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divide the act of approximating vectors from the rest of the indexing 
system and to analyse the approximation process separately. Section 4 
presents a measure suitable for judging the quality of the approxima
tions of vectors, and Section 5 describes the relationship of this 
measure with two other common measures. In order to create vector 
approximations it is simplest to deal with just one dimension at a time. 
Theory is developed in Section 6 that allows this to be done and this 
theory is applied in Section 7 in the development of an optimisation 
routine. This work is then applied to the VA-file (Section 8) and 
performance results are presented in Section 9. 

2. VECTOR INDEXING SYSTEMS 

Many indexing techniques exist which are suitable for use with nearest 
neighbour searching. Some of these are the k-d tree [20] and 
modifications of it [25, 45, 4, 3], the R-tree [27], the TV-tree [32], the 
SS-tree [42], the SS+-tree [31], and the X-tree [10]. Most of these 
structures may also be used for other query types as well. A good 
summary of pre-1995 methods may be found in [22]. 

It has generally been found that the available techniques have been 
of little benefit when the dimensionality of the vectors to be indexed is 
high. Some authors have reported performance gains using tree 
structures for data of up to about 100 dimensions on some data sets 
[12, 31, 10], but unless the data is highly clustered or unless some of 
dimensions are strongly dominant then performance gains are unlikely 
as partitioning techniques suffer from inherent problems in high
dimensional space [41]. If the Chebyshev metric (/00 ) is used to meas
ure dissimilarity then an efficient indexing structure, the Pyramid 
Technique [9], does exist. Unfortunately the properties of this measure 
are quite different from those of the other measures commonly used to 
test similarity. 

One possible solution is to search in parallel [7]. A number of other 
possibilities, however, also exist. One is to compare the query to 
approximations of the vectors, rather than to the vectors themselves. 
The approximations can be stored in a compact file, known as a VA
file [41], that can be scanned faster than a file that contains the original 
vectors. Vector approximations of this sort may also be incorporated 
into other structures, such as trees [8]. Another possibility is to project 
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the high-dimensional space into a lower dimensional space a number 
of times, then to use indexing techniques that work in the lower dimen
sional space to perform quick searches on each of the projections, and 
then finally to exhaustively search the union of the results. This 
technique has been used in sub-vector indexing (SVI) [11] and in [37]. 
Neural networks such as Kanerva's sparse distributed memory (SDM) 
[29] and Greene's CHAM network [24] are also possibly options. 

3. USING VECTOR APPROXIMATIONS 

Assume that it is possible to divide the indexing process into two 
stages, the approximation of the vectors and the rest: 

Vectors - Vector Approximations - Index 

If it is possible to represent an indexing system in this way then it 
should be possible to consider the first transformation, from the 
original vectors to their approximations, largely or entirely in isolation 
from the rest of the indexing system. 

Some indexing systems lend themselves readily to such treatment. In 
the case of the VA-file the final index is trivial-it is merely a file 
consisting of a sequence of vector approximations which, during a 
search, are read sequentially. It is also natural to treat the creation of 
the approximations separately for SVI and SDM. In both cases, before 
the index structure is created it is necessary to construct binary trans
formations of the original vectors (although it should be noted that it 
may be possible to generalise SDM to use the original vectors). Less 
obviously, it may also be beneficial to consider those indexing systems 
that employ spatial or data partitioning as implicitly using approx
imate vectors. This possibility is further considered in Section 6. 

Generally it will be desirable to minimise the error that results from 
approximating the vectors. In order to determine how best to perform 
the approximations it is necessary to choose some measure of error 
that compares the true similarity of a pair of vectors to the similarity 
achieved when using approximate versions of the vector pairs. 

It is possible to devise measures that directly compare the values 
of the elements in the original vectors with their approximations. 
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The approach taken here, however, is to compare the similarity scores 
that result when comparing approximations with the similarity scores 
that result when comparing the original vectors. Let X be a vector 
random variable that represents an item in the collection and let Y be a 
vector random variable that represents a query. Let S = s(X, Y) be the 
similarity between X and Y. Let X' and Y' be approximations of X and 
Y and let T = t(X', Y') be the approximate similarity of X and Y. sand t 
are functions that return a similarity and they are probably the same 
function. Note that each value of S has an associated approximate 
similarity T. If a sample of readings is taken, a set is obtained of 
the form { (si, ti) j 1 ~ i ~ n} where n is the sample size. The measure 
proposed here to determine the quality of the approximations operates 
on this set of pairs. Measures that compare the similarity/approximate 
similarity pairs have the virtue of not needing to explicitly refer to the 
similarity measure used or to the distribution of the data. 

Various measures exist for comparing sets of pairs of elements, the 
two most obvious perhaps being the total sum of squares (TSS) and 
the correlation. The measure that appears to be the most appropriate 
to use, however, is Var(S-T). Justification for use ofVar(S-T) as a 
measure is largely provided by the Theorem 1, presented below. 

4. THE V AR(S-T) MEASURE 

First define the completeness (0) of a search to be: 

(1) 

where C and R are the sets of close items and retrieved items respec
tively. Also let C and n be their complements. It is assumed that 

IRl=ICI. 
THEOREM 1 Let S, T and D be random variables with S representing 
the similarities between items in the collection and all possible queries, 
and T representing the approximations of these similarities. Let T = 
S+D, where Dis independent of S. Minimising Var(S-T) maximises 
the expected completeness of retrieval. 
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Proof Let D = µ + aN, where N is a standardised random variable. 
Note that Var(S-T)=a2, and that minimising a is equivalent to 
minimising Var(S-T). 

Various values of a will be considered. Let the unprimed forms of 
the variables (e.g., R) relate to a, the primed forms (e.g., R') relate to 
a', and the double primed forms (e.g., R") relate to a''. Let variables 
for which a=O be denoted using a* (e.g., R*). 

For a particular query consider two values taken by T, ta and th. All 
approximate similarities may be calculated as: 

(2) 

where i is an item to be retrieved and s; and n; are values taken by S 
and N respectively. From this it is evident that ta and th are both linear 
with respect to a. Consequently the lines given by (a, ta) and (a, tb) 

cross at most once. 
In the case where ta> th and ti, > t'a given a' > a?: 0 the lines must 

cross in the interval (a .. a') as there is at most one crossover, t'£ > t; for 
all a''?: a'. 

Consider two points aECnR' and bECnR'. aER* as aEC and 
b ER* as b EC. All close items have similarities greater than those of 
non-close items so Sa> Sb or, in an alternative notation, ta> th where 
a=O. As aER' and bER', and as all items that are retrieved have 
approximate similarities greater than those that are not retrieved, it 
can be seen that ti, > "1· The lines given by (a, ta) and (a, tb) therefore 
must cross in the interval (O .. a'). Therefore 

t~>t~ for all a">d when aECnR', bECnR' (3) 

Consider Eq. (1). As ICI is fixed, an increase in 0 implies an increase 
in IC n RI. An increase in IC n RI will only occur if an element of in 
C n R replaces an element in C n R. Increasing a cannot result in such 
a replacement by Eq. (3). Therefore 0 is non-increasing with respect to 
a. Note that 0 is a function of R (Eq. (1)), which is a function of the 
values of T, which are functions of a (Eq. (2)), so a non-increasing 
functional relationship (0= f(a)) exists between 0 and a. 

The expected completeness is the expected value of 0 (E0) over all 
searches. Now E0 = 1/IQI LqE Qfq(a), where Q is the set of queries. 
As each fq is non-increasing with respect to a, E0 is non-increasing 
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with respect to u. Thus minimising u maximises EB, and as minimising 
u is equivalent to minimising Var(S-T), minimising Var(S-T) 
maximises the expected completeness. Note, however, that not every 
reduction in Var(S-T) need lead to an increase in the expected 
completeness. ■ 

Theorem 1 makes one assumption: that the true score and the error 
that is introduced by creating an approximation of it are independent 
of one another. This assumption is unlikely to ever hold entirely. For a 
1-dimensional vector the dependency will be high. However it is 
believed that as dimensions are added the effects due to any one 
dimension are likely to be obscured. This belief is tested in Section 9. 
Furthermore is should be noted that if the distribution of the error 
only shifts gradually, particularly for scores around the score used as a 
cutoff for retrieval, then the measure should remain fairly effective. 

5. RELATED MEASURES 

Var(S-T) is closely related to the total sum of squares (TSS) and to 
the correlation. First consider the relationship with the TSS. It can be 
seen that: 

Var(S - T) = E[(S - T - ES+ ET)2] (4) 

(5) 

where St, ... , Sn and ft, ... , tn are n samples of S and T respectively, 
and µsand µrare the sample means. Thus minimising the total sum of 
squares Ef=t (s; - t; - µ9 + µr)1 is equivalent to minimising Var(S-T) 
for a given sample. In general it is permissible in similarity searching 
to replace the similarity measure used with a transformation that 
preserves the rank ordering of retrieved items. It is thus possible 
to replace S with S' such that S' = S - ES, and to minimise 
L~t (i; - t; + µ,)2. If Sis replaced by S" such that S" = S- ES+ ET, 
then it is possible to minimise the TSS of S" -T. However, any 
optimisation routine that uses the TSS must update all of the values 
taken by S" each time a value taken by is T changed. It is therefore 
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doubtful whether minimising the TSS is any simpler than minimising 
Var(S-T). 

It is also interesting to note the relationship of Var(S-T) to the 
correlation of S and T: 

Var(S - T) = Var S + Var T - 2asaTCor(S, T) (6) 

[ 1 aT] = Var S - 2asaT Cor(S, T) - 2 as (7) 

where as= ✓var S, aT = ✓var T and Cor(S, T) is the correlation of S 
and T. as is a constant in the process of optimising Tso it can be seen 
that minimising Var(S-T) is equivalent to maximising 

aT Cor(S, T) - --[ 1 aT] 
2 as 

(8) 

While there is a clear relationship between minimising Var( S - T) and 
maximising Cor(S, T), the two are not equivalent. 

If, however, T' = aT where a is free, then maximising Cor(S, T) 
is equivalent to minimising Var(S-T'). It is possible to find the opti
mal value of a by considering the partial derivate ofVar(S-aT) (call 
this V) with respect to a: 

V = Var(S - aT) 

=Vars+ c?varT- 2aCov(S, T) 

av aa = 2aVar T - 2Cov(S, T) 

(9) 

(10) 

(11) 

where Cov(S, T) is the covariance of S and T. Making 
(av ;aa)la=a' = o: 

, Cov(S,T) 
a=-----'---'-

VarT 
(12) 

where d is the optimal value of a. Substituting a' into Eq. (10) 
results in: 

V' = VarS[l - Cor(S, T)2] (13) 
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where V = V' when a= d. As for when the TSS is used as a measure, d 
is dependent on all the values of T, so if the expression is used in an 
optimisation routine it is necessary to update a' as T changes. It will 
probably not be possible to replace T with T' for all indexing systems. 
In any case it is usually fairly complicated to calculate the correlation, 
so it is unlikely to be used as a measure in an optimisation routine. 

6. MINIMISING ERROR IN ONE DIMENSION 

It is desirable to be able to deal with each dimension independently of 
the others when deciding where to place the partition boundary points 
as this simplifies calculations and reduces computation time. To aid 
this, two assumptions are adopted. Firstly, it is assumed that the 
distributions of the elements in each dimension are independent of the 
elements in the other dimensions for both the item vectors and 
the query vectors. This assumption is likely to come closer to holding 
for data sets that have undergone dimension reduction, as dimension 
reduction tends to remove correlations between dimensions. 

The second assumption is that the similarity function used may be 
represented as a sum of functions of the individual dimensions, i.e., 

d 

s(x,y) = I>j(Xi,Yi), (14) 
i=l 

where x = (x1, x2, . .. , XJ) and y = (y1, Y2, ... , Yd) are two vectors. In 
many cases. s; = sj for all 1 ::; i, j :s; d. Let the value s,{x;, y;) be referred 
to as a part-similarity. 

The dot product, a common measure, can clearly be expressed as a 
sum of part-similarities: 

d - - ~ X. y = L.tXiYi 

i=l 
(15) 

While the IP metrics cannot be expressed in this form, 1: can be, and as 
It is an order preserving transformation of IP for p > 0, IP may be 
replaced by 1:. Another common measure, the cosine measure (the dot 
product of two normalised vectors) [34] cannot be represented exactly 
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in this form as the act of normalisation introduces dependencies 
between the dimensions. The dependencies, however, are fairly small 
for long vectors and can probably be disregarded. 

In order to approximate the elements of one dimension it is 
desirable to have a separate measure of error for each dimension. As 
has been seen, the similarity score may be expressed as a summation 
of part-similarities. T may similarly be considered as a summation 
of part-approximate similarities: 

(16) 

So choosing Var(S-T) as the measure of error: 

d 

= Evar(Si - Ti) (18) 
i=I 

Equation (18) uses the assumption that the dimensions are indepen
dent of one another. This independence implies that the terms Si-Ti 
are independent of one another. Note that they are random variables 
and that the variances of independent random variables sum. Thus 
minimising Var(Si-Ti) for each dimension i individually minimises 
Var(S-T) overall. 

Let X be a random variable representing the elements from one 
dimension in a set of vectors. In order to approximate X, let the 
domain of X be partitioned and associate with each partition an 
approximation value. Let X1 be the approximation of X (see Fig. 1). 

DomainofX 

Domain ofX' 

Partition Boundary Points 

~ 
. . ' ' . ' . ' 

x~x 

Approximation Values 

FIGURE 1 Approximating the elements in a dimension. 
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Although the values of X' are depicted as being drawn from the 
corresponding partitions, this need not necessarily be the case. 

In some cases, such as in SVI and SDM, the vectors in the collection 
need to be transformed into binary vectors. If a transformation to a 
binary vector is required then the values taken by X' may be binary 
strings. If binary unreflected Gray codes are used to represent the par
titions, then the Hamming distance between two binary vectors (i.e., 
the number of bits which are different) is equal to the city-block 
distance (/1) when assigning integers sequentially to the partitions (see 
Fig. 2). Note that as the values of X' in this case are restricted to being 
binary strings (or equivalently, integers), the minimum value that may 
be achieved by Var(S;- T;) is likely to be greater than that for when 
there is an unrestricted choice of real values. Some extra flexibility 
may be introduced by using a scaling factor c; and minimising 
Var(S;-c;T;) instead of Var(S;-T;). c; may be optimised in a 
fashion similar to Eq. (9) to give the optimal value: 

, Cov(S;, T;) 
C-=-~---'-

1 VarT; 
(19) 

As for the full-vector case, Cor(S;, T;) may be maximised as an 
alternative to minimising Var(S;-c;T;). 

Note that many indexing techniques, such as the k-d tree, partition 
the search space on a dimension-by-dimension basis. One method of 
doing this is to divide the domain into intervals of equal size. An 
alternative method, which is usually superior, is to partition a dimen
sion so that there is an equal number of elements in each partition. 
These methods are respectively examples of spatial partitioning 
and data partitioning. Neither of these methods are ideal: spatial 

DomainofX 

Partition IDs 

Domainof:x' 

(Gray Codes) 

000 

2 

001 

3 

011 

4 

111 

FIGURE 2 The use of Gray codes to represent partitions of an element's domain. 
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partitioning ignores the density of the data and data partitioning 
ignores the distances between the points. It is to be noted that the 
measure Var(Si-Ti) suffers from neither of these defects. While most 
indexing techniques do not explicitly construct approximate vectors, it 
is possible to interpret their behaviour in terms of vector approxima
tions. The act, for instance, of partitioning a data set into two parts 
along one dimension can be equated to approximating the values in 
that dimension by a 1 or a 2. It is possible, therefore, to modify many 
indexing systems so that they construct partitions so as to minimise 
Var(Si-T;) or Var(Si-c;Ti)- Doing so could lead to improvements in 
performance, but this is yet to be tested. 

7. OPTIMISING PARTITION BOUNDARY 
POINTS BY DIMENSION 

It is possible to optimise the approximations for a dimension i by 
adjusting the partition boundary points and the values taken by X' so 
as to minimise Var(Si-Ti). If possible it would be best to set these 
parameters so that Var(Si-Ti) achieves its global minimum. No 
technique for finding this minimum is known, so instead a heuristic 
optimisation algorithm has been used. 

In order to estimate Var(Si-Ti), a number of vectors (n) repre
senting items from the collection are drawn at random and paired with 
randomly selected vectors representing queries. The elements of dimen
sion i from this sample are then used to calculate Si and Ti. Var(Si-Ti) 
is then approximated by 

[1 n ] [1 n ]2 
- ~)si - t;)2 - - :~::)si - ti) 
n i=l n i=l 

(20) 

If n is large then this is clearly a slow calculation to make. In order to 
reduce the time spent calculating Var(Si-Ti) a simple random descent 
algorithm was used (see Algorithm 1). Only one partition boundary 
point was moved at a time, and each time only by a small step. The 
value of Var(Si-TJ then only requires a small adjustment after each 
move and does not need to be fully calculated. For /2 and a number of 
other measures it is also possible to optimally set an approximation 
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value in near-constant time if the remaining parameters are fixed. Note 
that as all the parameters are interdependent the approximation value 
is optimal only with respect to the other current values of the other 
parameters. It does not produce one of the parameters of the global 
minimum of Var(S;- T;). Each time a partition boundary point or 
approximation value is changed, several statistics used for calculating 
Var(S;-T;) and the approximation values need to be updated. The 
details of these updates are quite involved and have been omitted. A 
number of other heuristic algorithms were tested, but all of these 
required Var(S;-T;) to be fully calculated after each adjustment of the 
parameters. The algorithm presented here clearly performed better 
both in terms of speed and quality of results. To start with the 
algorithm tries to move the partition boundary points by moderately
sized steps, and when no improvements can be found the size of the 
steps is reduced. The approximation values are updated frequently to 
take advantage of the fact that this update is a quick operation. 

ALGORITHM 1 Optimisation algorithm for setting partition boundary 
points and approximations using incremental update of statistics 

Set all partition boundary points using data partitioning 
Set all approximations to be the mid-way values between 

boundary points 

Calculate Var(S-T) and the statistics required for setting 
approximation values. 

for all partitions in random order do 
Set an approximation value; update statistics 

end for 
CommonRadius= 1000 {For a sample size of 100000.} 
while commonRadius > 0 do 

radius= commonRadius 
for all boundary points and both directions in random order do 

while no improvement in Var(S-T) and radius> 0 do 
Consider moving the boundary point in the given direction 

by radius. 

Calculate Var(S- T) for the prospective change. 
if an improvement then 
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Set the new partition boundary point; update statistics 
for all partitions in random order do 

Set approximation value, update statistics 
end for 

end if 
radius= radius/2 

end while 
end for 
if number of moved boundary partition points ::; 2 ( or 1 for 4 

partitions or fewer) 

then 
commonRadius = commonRadius /2 

end if 
end while 

8. APPLICATION TO THE VA-FILE 

The VA-file [41] is a file that contains one approximation for each of 
the vectors in the collection. As the approximations require less 
memory to store than the full vectors the VA-file is smaller than a file 
that contains the full vectors, and is consequently quicker to search. In 
the original version of the VA-file technique the scan of the VA-file 
was the first of two stages. The first stage identified candidate vectors 
(by considering the boundary points of each partition) and the second 
stage searched through these candidates to find the closest vectors to 
the query. This resulted in a complete search. The second stage does, 
however, significantly increase the search time. The version of the 
technique considered here only performs the first stage of the search, 
and instead of a set of candidates, a set of approximate similarity 
scores is produced. The resulting search is incomplete but faster than 
the two-sfage search. 

In order to create the VA-file, it is first necessary to partition the 
domain of each of the dimensions. Weber [41] forms partitions that 
contain equal numbers of elements. If approximation scores are to be 
calculated then it is necessary that each partition have an associated 
approximate value. Various values can be used, for example the 
median value or the value midway between the partition boundaries. 
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Weber uses the lower bound of the partitions (assuming a distance 
measure rather than a similarity measure) for ordering the candidates 
for subsequent search. 

An alternative to this approach is to set the partitions and 
approximation value so as to minimise Var(S;-T;) for each dimension 
i. Algorithm 1 may be used for this purpose. It is desirable also to 
allow the dimensions to have different numbers of partitions, as this 
allows for the more efficient use of memory. If the overall number of 
bytes for a vector approximation is fixed then the number of partitions 
may be assigned so as to minimise Var(S-T) overall. For simplicity it 
is assumed that the number of partitions for each dimension is a power 
of 2. This allows each element to be approximated by a few bits that 
are kept independent of the other dimensions and thus simplifies the 
encoding and decoding routines considerably. Algorithm 2 is used to 
allocate the available bits between the dimensions. The allocation 
process involves adding and removing bits from each dimension to 
determine the relative effects of each on the measure Var(S-T). It is 
necessary to call the program implementing Algorithm 1 many times 
during this process, so consequently the process is quite slow. It was, 
for instance, necessary to limit each dimension to a maximum of 8 bits 
as it took too long to set the parameters if more bits were allocated. It 
would be desirable to be able to predict the number of bits required for 
each dimension by analysing the data distribution ahead of time. No 
adequate method, however, has yet been found. 

ALGORITHM 2 Allocate Bits 
Assign bits evenly amongst elements 
while finding improvements do 

for i = l to d do 
b = current number of bits assigned to dimension i 
increase;= Varb(S;-T;)- Varb+ 1(S;-T;) 
{Varb indicates the variance given b bits. increase and 

decrease are lists.} 

ifb>Othen 
decrease;= Varb_ 1(S;-T;) Varb(S;-T;) 

end if 
end for 
Sort increase into descending order 
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Sort decrease into descending order 
for= I to d do 

if increase;> decrease; then 
decrement the number of bits assigned to the dimension of 

the decrease 

increment the number of bits assigned to the dimension of 
the increase 

end if 
end for 

end while 

9. RESULTS 

9.1. Testing Error Dependency 

In order to test the extent of the dependency of the error D on the 
similarity score S (see Section 4), four simple experiments of the 
following form were conducted. A set of tuples, both of whose elements 
are vectors, was generated. The Euclidean distance (S) between each 
pair of vectors was calculated. The domain of each of the dimensions of 
the vectors was partitioned, and each partition assigned an approximate 
value. The distance between the approximate vectors was calculated 
(T). The error between each pair of vectors was then D = T - S. The 
probability density function (PDF) of D was calculated for those vector 
pairs whose values of Slay within the largest IO%, middle 10% and 
smallest 10% of values. The PDFs for vectors of dimensionality 1 and 
10 are shown in Figure 3. This procedure was followed for four data 
sets: for I-dimensional uniformly distributed vectors, for IO-dimen
sional uniformly distributed vectors, for I-dimensional normally 
distributed vectors, and for IO-dimensional normally distributed 
vectors. The standard normal distribution was used to generate the 
elements in each of the dimensions in the normal data sets. In the case 
of the uniformly distributed data the partition boundary points were 
placed at 0.125, 0.25, 0.375, 0.5, 0.625, 0.75 and 0.875, with the 
approximation values of each of the partitions being placed at the 
midway points between the partition boundary points (where O and 1 
are treated as the endpoints of the end-most partitions). In the case of 
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FIGURE 3 The PDFs of the error D given that the similarity Sis in the largest, middle 
or smallest 10% of S values for 1-and IO-dimensional vectors respectively. 

the normally distributed data the partition boundary points were placed 
at by partitioning the domain of each element at the points -3, - 2, -1, 
0, 1, 2 and 3, with the approximation values being -3.5, -2.5, - 1.5, 
-0.5, 0.5, 1.5, 2.5 and 3.5. The partitioning was somewhat arbitrary in 
both the uniform and normal cases, but it was designed to cover the data 
fairly well. These graphs demonstrate that adding dimensions does 
reduce the dependency of the error on the similarity. When there is only 
one dimension there is a very strong dependency whereas when there are 
10 the PDFs more closely resemble one another. Nonetheless some 
dependency is clearly present and this will effect the performance of 
Var(S-T) as a measure. The persistence of the dependency is prob
ably due to the strength of the dependency in the single dimension 
case. The similarity measure used, which emphasises differences in 
individual dimensions would also have an effect. The degree of 
dependency that is evident for 10 dimensions does indicate that some 
caution is needed when using Var(S-T) as a measure. It is possible 
that even in a data set which has a very large number of dimensions, a 
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few may dominate in their contribution to the overall similarity scores, 
and to the error. 

9.2. The Modified VA-File 

In all of the tests presented here 100 queries were run on collections 
consisting of 100 000 vectors. In each case the completeness is the 
average percentage of the 10 items closest to the query that were 
actually retrieved. Six different collections were used. The uniform data 
set has 50 dimensions, with the data being uniformly distributed in a 
hypercube. The normal data set has 50 dimensions, with the elements 
in each dimension having a standard normal distribution. The mixed 
data set has 50 dimensions, with each dimension being distributed 
according to a different type of random distribution, and with the 
queries having different distributions to the indexed vectors. The 
AustLII data set is a 100-dimensional data set derived from perform
ing dimension reduction on a collection of legal documents. Finally 
ColourHistRJ and ColourHistR5 are two data sets derived using 
colour histograms from the same collection of images taken from the 
Internet. The ColourHistRJ data set contains histograms for one 
region and has 64 dimensions, whereas the ColourHistR5 data set 
contains histograms for 5 regions and has 320 dimensions. The simi
larity measures used were the cosine measure (cos) and the Euclidean 
distance (/2), 

Table I compares the average completeness of the searches that 
result when the dimensions are partitioned into equal parts with that 
obtained by setting the parameters so as to minimise Var(S;-T;) for 

TABLE I The average completeness when using data partitioning 
and when minimising Var(Si-Ti). Each element has 16 partitions 

Collection 

Uniform (/2) 
Uniform (cos) 
Normal (/2) 
Normal (cos) 
Mixed (/2) 

Mixed (cos) 
AustLII (cos) 
ColourHistRI (/2) 

ColourHistRS (/2) 

Data partitioning 

82.4% 
70.6% 
32.1% 
29.1% 
41.5% 
24.0% 
31.1% 
33.0% 
42.6% 

Error minimisation 

82.2% 
82.6% 
74.1% 
70.0% 
74.7% 
51.2% 
32.5% 
57.0% 
69.3% 
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each dimension i. In the first case the values midway between the 
boundaries of each partition were used as approximation values. The 
outer boundary of an end-most partition is taken to be the minimum 
or maximum of the values in the partition. In most cases optimising 
Var(S;-T;) produced considerably better results. In the case that ran 
against the trend, Uniform (/2), the difference was small and possibly 
due to sampling error. 

It is to be noted that in most cases in which both /2 and the cosine 
measure were tested, performance was superior for /2• The reason for 
this is not clear. One possibility, however, is that when /2 is used items 
close to the centre of the query distribution are likely to be retrieved 
regardless of the query. Using the cosine measure is effectively the 
same as normalising the data, and normalising the data removes the 
significance of the positioning of items relative to the origin. Thus 
when the cosine measure is used there may be a larger number of 
vectors that are close to the query and the task of distinguishing 
between them is more difficult. 

Using different numbers of partitions for each dimension may 
improve the quality of retrieval. Table II contains the results of tests 
that allow the number of partitions for each dimension to vary, and 
these results are compared to the situation in which the number of 
partitions is the same for each dimension. Algorithm 2 is used to 
allocate the number of partitions to for each dimension. In both cases 
the total number of bytes used to store a vector approximation was 
f d/21, where d is the number of dimensions. A maximum of 256 
partitions was imposed on the dimensions so as to limit the amount of 
time required to optimise the parameters for each dimension. Only 
those test sets that do not have identically distributed dimensions were 
tested. As can be seen, allowing different numbers of bits to be 

TABLE II The average completeness when fixing the number of partitions of each 
dimension to 16 and when allowing the bits to be redistributed 

Collection 

Mixed (/2) 

Mixed (cos) 
AustLII (cos) 
ColourHistRl (/2) 

ColourHistR5 (/2) 

Same number of partitions 
for each dimension 

74.7% 
51.2% 
32.5% 
57.0% 
69.3% 

Varying number of 
partitions 

82.7% 
58.7% 
35.0% 
82.2% 
91.8% 
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allocated to different dimensions results in improved performance in 
all cases. Allocating the bits to each dimension is a slow process, and a 
the faster technique would be desirable. 

The figures for completeness presented in Tables I and II showed the 
number of average of items amongst the 10 closest to the query that 
were among the 10 items actually retrieved. In the results presented in 
Table III the number of items amongst the closest 10 that appear in the 
top 10, 20, 30, 40 and 50 items retrieved are presented. Each approxi
mation vector was allocated I d/21 bytes, with dimensions having 
variable numbers of partitions. It is evident that if more than 10 items 
are retrieved then the completeness of the search rapidly increases. In 
most cases nearly all of the 10 items closest to the query are retrieved 
within the top 50 items. 

The effect of using different lengths of approximation vectors was 
tested, and the results of these tests are presented in Table IV. The 
number of partitions for each dimension was allowed to vary. 

TABLE III The percentage of the 10 items closest to the query, given that the first 10, 
20, 30, 40 and 50 items are retrieved 

Collection 10/10 10/20 10/30 10/40 10/50 

Uniform (/2) 82.8% 98.4% 100.0% 100.0% 100.0% 
Uniform (cos) 82.8% 98.1% 99.7% 100.0% 100.0% 
Normal (/2) 72.7% 91.6% 97.4% 99.2% 99.7% 
Normal (cos) 71.9% 92.6% 97.9% 99.3% 99.7% 
Mixed (/2) 82.7% 98% 99.9% 100.0% 100.0% 
Mixed (cos) 58.7% 89.1% 98.0% 99.2% 99.9% 
AustLII (cos) 35.0% 48.7% 55.1% 60.0% 63.9% 
ColourHistRl (/2) 82.2% 97.5% 99.6% 99.9% 100.0% 
ColourHistR5 (/2) 91.8% 99.5% 99.8% 100.0% 100.0% 

TABLE IV The average completeness given different lengths of approximation vector 

Average bits per element 

Collection 2 3 4 

Uniform (/2) 3.5% 34.8% 62.3% 82.8% 
Uniform (cos) 5.2% 32.9% 60.2% 82.8% 
Normal (12) 1.6% 20.0% 46.8% 72.7% 
Normal (cos) 2.7% 18.7% 47.1% 71.9% 
Mixed (12) 8.7% 44.9% 67.2% 82.7% 
Mixed (cos) 16.4% 30.6% 42.2% 58.7% 
AustLII (cos) 2.5% 15.0% 27.9% 35.0% 
ColourHistRl (/2) 39.8% 62.3% 75.8% 82.2% 
ColourHistR5 (12) 51.3% 72.5% 82.6% 91.8% 

.. 
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Approximation vectors that had an average of 1, 2, 3 and 4 bits per 
dimension were tested. As would be expected, using longer vector 
approximations increases the completeness in all cases. It appears that 
in general 4 or more bits per dimension are required. It is to be noted 
that fewer bits are required for ColourHistR5, with 320 dimensions, 
than for Colour Hist RI, with 64 dimensions. The two are very similar 
data sets, so this suggests that longer vectors require fewer bits in order 
to achieve comparable levels of completeness. 

10. CONCLUSION 

A measure was presented which is suitable for judging the quality of 
the approximations of vectors for use in similarity searching. One 
assumption was made when deriving this measure. It was shown that 
the assumption comes closer to being met as the dimensionality of the 
vectors increases, so long as no dimensions dominate in their 
contribution to the similarity scores. Given two further assumptions 
regarding the independence of elements in different dimensions, the 
measure may be used in constructing vector approximations for a 
number of different indexing systems. The VA-file was selected as an 
example of one application, and it was seen that when the measure was 
used to construct the vector approximations, improved performance 
was the result for a number of data sets. 
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