
Systems Research and Info. Systems
Vol. 10, pp. 89-112
Reprints available directly from the pU:blisher
Photocopying permitted by license c,,!::.•

© 2001 OPA (Overseas Publishers Association) N.V.
Published by license under

the Gordon and Breach Science Publishers imprint,
a member of the· Taylor & Francis Group.

APPROXIMATING VECTORS
FOR SIMILARITY SEARCHING

B. J. BRIEDISa,* and T. D. GEDEONb,t

a School of Computer Science and Engineering, The University
of New South Wales, NSW, Australia; bSchool of Information

Technology, Murdoch University, WA, Australia

(Received June 2000)

Similarity searching in large collections that use long vectors to represent objects is
considered. A number of vector indexing techniques explicitly or implicitly involve the
use of vectors whose elements approximate those of the vectors to be indexed. This paper
presents a measure that, given one assumption, is suitable for judging the quality of
approximations of vectors. If it is further assumed that the distributions of elements of
each dimension are independent of those of other dimensions and that the distance
measure preserves this independence, then it is possible to apply a related measure to the
elements of each dimension independently of those in other dimensions. These measures
are used in the design of a heuristic algorithm that creates approximations of vectors.
The VA-file is modified to use approximations of vectors created using this algorithm,
and its performance is evaluated.

Keywords: Similarity searching; k-nearest neighbour; High-dimensional vector re
trieval

1. INTRODUCTION

This paper discusses a method for improving the construction of
approximations of vectors for use in conjunction with a number of
indexing techniques used for similarity searching. The vectors under
consideration are dense and long, typically with between about ten
and a few hundred dimensions.

*Corresponding author. e-mail: benbriedis@hotmail.com
te-mail: tom@it.murdoch.edu.au

89

90 B. J. BRIEDIS AND T. D. GEDEON

It is assumed that there is a large collection of objects and that
searches are frequently conducted on this collection in order to find
some number of objects that are similar to the given query objects. It is
further assumed that the objects and the queries are represented using
vectors, and that these vectors are compared using a similarity
measure. This form of similarity searching is often called k-nearest
neighbour searching. In this case, however, objects are thought of as
being represented as points, and a distance measure is used to compare
points. The terminology adopted here will be one of vectors and
similarity, rather than one of points and distances.

Similarity searching has a large and diverse set of applications. Of
these only a subset use long dense vectors to represent objects. In text
retrieval and text classification long sparse vectors used have tradi
tionally been used [35]. More recently, however, dimension reduction
techniques have been employed in some systems to improve the quality
of retrieval [15] and classification [44]. The vectors in these collections
have between about 50 and 200 elements each, and are dense. Another
range of applications result from the ability to represent shapes using
vectors [36, 28]. The retrieval of shapes is useful in areas such as
computer-aided design (CAD), geographical information systems
(GIS), and robotic vision and movement [26, 6]. More complex one
and three-dimensional information may also by represented by long
vectors through the use of histograms, Fourier transforms and various
other methods. This leads to several applications in multimedia
[19, 21, 31, 39], including the indexing of photographs, video, images of
faces [40], medical images [30], and astronomical spectograms [13].
Similarity searching based on long dense vectors may also be
performed on molecular sequences (e.g., DNA) [2, 16,43]. Other
applications are knowledge discovery, data mining [18] and time series
prediction and analysis (e.g., for financial market movements) [17, 1].
Furthermore, the k-nearest neighbour algorithm has long been used
for classification [14] in areas such as optical character recognition
(OCR) and speech recognition [5]. Finding vectors quickly is also
useful for multivariate density estimation [38] (both when using the k
nearest neighbour density estimation technique and when using kernel
density estimation), and in vector quantisation for data, which is
mostly used for the compression of images and sound [23].

After presenting a number of existing indexing systems in Section 2,
Section 3 suggests that for some indexing systems it is possible to

..

APPROXIMATING VECTORS 91

divide the act of approximating vectors from the rest of the indexing
system and to analyse the approximation process separately. Section 4
presents a measure suitable for judging the quality of the approxima
tions of vectors, and Section 5 describes the relationship of this
measure with two other common measures. In order to create vector
approximations it is simplest to deal with just one dimension at a time.
Theory is developed in Section 6 that allows this to be done and this
theory is applied in Section 7 in the development of an optimisation
routine. This work is then applied to the VA-file (Section 8) and
performance results are presented in Section 9.

2. VECTOR INDEXING SYSTEMS

Many indexing techniques exist which are suitable for use with nearest
neighbour searching. Some of these are the k-d tree [20] and
modifications of it [25, 45, 4, 3], the R-tree [27], the TV-tree [32], the
SS-tree [42], the SS+-tree [31], and the X-tree [10]. Most of these
structures may also be used for other query types as well. A good
summary of pre-1995 methods may be found in [22].

It has generally been found that the available techniques have been
of little benefit when the dimensionality of the vectors to be indexed is
high. Some authors have reported performance gains using tree
structures for data of up to about 100 dimensions on some data sets
[12, 31, 10], but unless the data is highly clustered or unless some of
dimensions are strongly dominant then performance gains are unlikely
as partitioning techniques suffer from inherent problems in high
dimensional space [41]. If the Chebyshev metric (/00) is used to meas
ure dissimilarity then an efficient indexing structure, the Pyramid
Technique [9], does exist. Unfortunately the properties of this measure
are quite different from those of the other measures commonly used to
test similarity.

One possible solution is to search in parallel [7]. A number of other
possibilities, however, also exist. One is to compare the query to
approximations of the vectors, rather than to the vectors themselves.
The approximations can be stored in a compact file, known as a VA
file [41], that can be scanned faster than a file that contains the original
vectors. Vector approximations of this sort may also be incorporated
into other structures, such as trees [8]. Another possibility is to project

92 B. J. BRIEDIS AND T. D. GEDEON

the high-dimensional space into a lower dimensional space a number
of times, then to use indexing techniques that work in the lower dimen
sional space to perform quick searches on each of the projections, and
then finally to exhaustively search the union of the results. This
technique has been used in sub-vector indexing (SVI) [11] and in [37].
Neural networks such as Kanerva's sparse distributed memory (SDM)
[29] and Greene's CHAM network [24] are also possibly options.

3. USING VECTOR APPROXIMATIONS

Assume that it is possible to divide the indexing process into two
stages, the approximation of the vectors and the rest:

Vectors - Vector Approximations - Index

If it is possible to represent an indexing system in this way then it
should be possible to consider the first transformation, from the
original vectors to their approximations, largely or entirely in isolation
from the rest of the indexing system.

Some indexing systems lend themselves readily to such treatment. In
the case of the VA-file the final index is trivial-it is merely a file
consisting of a sequence of vector approximations which, during a
search, are read sequentially. It is also natural to treat the creation of
the approximations separately for SVI and SDM. In both cases, before
the index structure is created it is necessary to construct binary trans
formations of the original vectors (although it should be noted that it
may be possible to generalise SDM to use the original vectors). Less
obviously, it may also be beneficial to consider those indexing systems
that employ spatial or data partitioning as implicitly using approx
imate vectors. This possibility is further considered in Section 6.

Generally it will be desirable to minimise the error that results from
approximating the vectors. In order to determine how best to perform
the approximations it is necessary to choose some measure of error
that compares the true similarity of a pair of vectors to the similarity
achieved when using approximate versions of the vector pairs.

It is possible to devise measures that directly compare the values
of the elements in the original vectors with their approximations.

APPROXIMATING VECTORS 93

The approach taken here, however, is to compare the similarity scores
that result when comparing approximations with the similarity scores
that result when comparing the original vectors. Let X be a vector
random variable that represents an item in the collection and let Y be a
vector random variable that represents a query. Let S = s(X, Y) be the
similarity between X and Y. Let X' and Y' be approximations of X and
Y and let T = t(X', Y') be the approximate similarity of X and Y. sand t
are functions that return a similarity and they are probably the same
function. Note that each value of S has an associated approximate
similarity T. If a sample of readings is taken, a set is obtained of
the form { (si, ti) j 1 ~ i ~ n} where n is the sample size. The measure
proposed here to determine the quality of the approximations operates
on this set of pairs. Measures that compare the similarity/approximate
similarity pairs have the virtue of not needing to explicitly refer to the
similarity measure used or to the distribution of the data.

Various measures exist for comparing sets of pairs of elements, the
two most obvious perhaps being the total sum of squares (TSS) and
the correlation. The measure that appears to be the most appropriate
to use, however, is Var(S-T). Justification for use ofVar(S-T) as a
measure is largely provided by the Theorem 1, presented below.

4. THE V AR(S-T) MEASURE

First define the completeness (0) of a search to be:

(1)

where C and R are the sets of close items and retrieved items respec
tively. Also let C and n be their complements. It is assumed that

IRl=ICI.
THEOREM 1 Let S, T and D be random variables with S representing
the similarities between items in the collection and all possible queries,
and T representing the approximations of these similarities. Let T =
S+D, where Dis independent of S. Minimising Var(S-T) maximises
the expected completeness of retrieval.

94 B. J. BRIEDIS AND T. D. GEDEON

Proof Let D = µ + aN, where N is a standardised random variable.
Note that Var(S-T)=a2, and that minimising a is equivalent to
minimising Var(S-T).

Various values of a will be considered. Let the unprimed forms of
the variables (e.g., R) relate to a, the primed forms (e.g., R') relate to
a', and the double primed forms (e.g., R") relate to a''. Let variables
for which a=O be denoted using a* (e.g., R*).

For a particular query consider two values taken by T, ta and th. All
approximate similarities may be calculated as:

(2)

where i is an item to be retrieved and s; and n; are values taken by S
and N respectively. From this it is evident that ta and th are both linear
with respect to a. Consequently the lines given by (a, ta) and (a, tb)

cross at most once.
In the case where ta> th and ti, > t'a given a' > a?: 0 the lines must

cross in the interval (a .. a') as there is at most one crossover, t'£ > t; for
all a''?: a'.

Consider two points aECnR' and bECnR'. aER* as aEC and
b ER* as b EC. All close items have similarities greater than those of
non-close items so Sa> Sb or, in an alternative notation, ta> th where
a=O. As aER' and bER', and as all items that are retrieved have
approximate similarities greater than those that are not retrieved, it
can be seen that ti, > "1· The lines given by (a, ta) and (a, tb) therefore
must cross in the interval (O .. a'). Therefore

t~>t~ for all a">d when aECnR', bECnR' (3)

Consider Eq. (1). As ICI is fixed, an increase in 0 implies an increase
in IC n RI. An increase in IC n RI will only occur if an element of in
C n R replaces an element in C n R. Increasing a cannot result in such
a replacement by Eq. (3). Therefore 0 is non-increasing with respect to
a. Note that 0 is a function of R (Eq. (1)), which is a function of the
values of T, which are functions of a (Eq. (2)), so a non-increasing
functional relationship (0= f(a)) exists between 0 and a.

The expected completeness is the expected value of 0 (E0) over all
searches. Now E0 = 1/IQI LqE Qfq(a), where Q is the set of queries.
As each fq is non-increasing with respect to a, E0 is non-increasing

APPROXIMATING VECTORS 95

with respect to u. Thus minimising u maximises EB, and as minimising
u is equivalent to minimising Var(S-T), minimising Var(S-T)
maximises the expected completeness. Note, however, that not every
reduction in Var(S-T) need lead to an increase in the expected
completeness. ■

Theorem 1 makes one assumption: that the true score and the error
that is introduced by creating an approximation of it are independent
of one another. This assumption is unlikely to ever hold entirely. For a
1-dimensional vector the dependency will be high. However it is
believed that as dimensions are added the effects due to any one
dimension are likely to be obscured. This belief is tested in Section 9.
Furthermore is should be noted that if the distribution of the error
only shifts gradually, particularly for scores around the score used as a
cutoff for retrieval, then the measure should remain fairly effective.

5. RELATED MEASURES

Var(S-T) is closely related to the total sum of squares (TSS) and to
the correlation. First consider the relationship with the TSS. It can be
seen that:

Var(S - T) = E[(S - T - ES+ ET)2] (4)

(5)

where St, ... , Sn and ft, ... , tn are n samples of S and T respectively,
and µsand µrare the sample means. Thus minimising the total sum of
squares Ef=t (s; - t; - µ9 + µr)1 is equivalent to minimising Var(S-T)
for a given sample. In general it is permissible in similarity searching
to replace the similarity measure used with a transformation that
preserves the rank ordering of retrieved items. It is thus possible
to replace S with S' such that S' = S - ES, and to minimise
L~t (i; - t; + µ,)2. If Sis replaced by S" such that S" = S- ES+ ET,
then it is possible to minimise the TSS of S" -T. However, any
optimisation routine that uses the TSS must update all of the values
taken by S" each time a value taken by is T changed. It is therefore

96 B. J. BRIEDIS AND T. D. GEDEON

doubtful whether minimising the TSS is any simpler than minimising
Var(S-T).

It is also interesting to note the relationship of Var(S-T) to the
correlation of S and T:

Var(S - T) = Var S + Var T - 2asaTCor(S, T) (6)

[1 aT] = Var S - 2asaT Cor(S, T) - 2 as (7)

where as= ✓var S, aT = ✓var T and Cor(S, T) is the correlation of S
and T. as is a constant in the process of optimising Tso it can be seen
that minimising Var(S-T) is equivalent to maximising

aT Cor(S, T) - --[1 aT]
2 as

(8)

While there is a clear relationship between minimising Var(S - T) and
maximising Cor(S, T), the two are not equivalent.

If, however, T' = aT where a is free, then maximising Cor(S, T)
is equivalent to minimising Var(S-T'). It is possible to find the opti
mal value of a by considering the partial derivate ofVar(S-aT) (call
this V) with respect to a:

V = Var(S - aT)

=Vars+ c?varT- 2aCov(S, T)

av aa = 2aVar T - 2Cov(S, T)

(9)

(10)

(11)

where Cov(S, T) is the covariance of S and T. Making
(av ;aa)la=a' = o:

, Cov(S,T)
a=-----'---'-

VarT
(12)

where d is the optimal value of a. Substituting a' into Eq. (10)
results in:

V' = VarS[l - Cor(S, T)2] (13)

APPROXIMATING VECTORS 97

where V = V' when a= d. As for when the TSS is used as a measure, d
is dependent on all the values of T, so if the expression is used in an
optimisation routine it is necessary to update a' as T changes. It will
probably not be possible to replace T with T' for all indexing systems.
In any case it is usually fairly complicated to calculate the correlation,
so it is unlikely to be used as a measure in an optimisation routine.

6. MINIMISING ERROR IN ONE DIMENSION

It is desirable to be able to deal with each dimension independently of
the others when deciding where to place the partition boundary points
as this simplifies calculations and reduces computation time. To aid
this, two assumptions are adopted. Firstly, it is assumed that the
distributions of the elements in each dimension are independent of the
elements in the other dimensions for both the item vectors and
the query vectors. This assumption is likely to come closer to holding
for data sets that have undergone dimension reduction, as dimension
reduction tends to remove correlations between dimensions.

The second assumption is that the similarity function used may be
represented as a sum of functions of the individual dimensions, i.e.,

d

s(x,y) = I>j(Xi,Yi), (14)
i=l

where x = (x1, x2, . .. , XJ) and y = (y1, Y2, ... , Yd) are two vectors. In
many cases. s; = sj for all 1 ::; i, j :s; d. Let the value s,{x;, y;) be referred
to as a part-similarity.

The dot product, a common measure, can clearly be expressed as a
sum of part-similarities:

d - - ~ X. y = L.tXiYi

i=l
(15)

While the IP metrics cannot be expressed in this form, 1: can be, and as
It is an order preserving transformation of IP for p > 0, IP may be
replaced by 1:. Another common measure, the cosine measure (the dot
product of two normalised vectors) [34] cannot be represented exactly

98 B. J. BRIEDIS AND T. D. GEDEON

in this form as the act of normalisation introduces dependencies
between the dimensions. The dependencies, however, are fairly small
for long vectors and can probably be disregarded.

In order to approximate the elements of one dimension it is
desirable to have a separate measure of error for each dimension. As
has been seen, the similarity score may be expressed as a summation
of part-similarities. T may similarly be considered as a summation
of part-approximate similarities:

(16)

So choosing Var(S-T) as the measure of error:

d

= Evar(Si - Ti) (18)
i=I

Equation (18) uses the assumption that the dimensions are indepen
dent of one another. This independence implies that the terms Si-Ti
are independent of one another. Note that they are random variables
and that the variances of independent random variables sum. Thus
minimising Var(Si-Ti) for each dimension i individually minimises
Var(S-T) overall.

Let X be a random variable representing the elements from one
dimension in a set of vectors. In order to approximate X, let the
domain of X be partitioned and associate with each partition an
approximation value. Let X1 be the approximation of X (see Fig. 1).

DomainofX

Domain ofX'

Partition Boundary Points

~
. . ' ' . ' . '

x~x

Approximation Values

FIGURE 1 Approximating the elements in a dimension.

APPROXIMATING VECTORS 99

Although the values of X' are depicted as being drawn from the
corresponding partitions, this need not necessarily be the case.

In some cases, such as in SVI and SDM, the vectors in the collection
need to be transformed into binary vectors. If a transformation to a
binary vector is required then the values taken by X' may be binary
strings. If binary unreflected Gray codes are used to represent the par
titions, then the Hamming distance between two binary vectors (i.e.,
the number of bits which are different) is equal to the city-block
distance (/1) when assigning integers sequentially to the partitions (see
Fig. 2). Note that as the values of X' in this case are restricted to being
binary strings (or equivalently, integers), the minimum value that may
be achieved by Var(S;- T;) is likely to be greater than that for when
there is an unrestricted choice of real values. Some extra flexibility
may be introduced by using a scaling factor c; and minimising
Var(S;-c;T;) instead of Var(S;-T;). c; may be optimised in a
fashion similar to Eq. (9) to give the optimal value:

, Cov(S;, T;)
C-=-~---'-

1 VarT;
(19)

As for the full-vector case, Cor(S;, T;) may be maximised as an
alternative to minimising Var(S;-c;T;).

Note that many indexing techniques, such as the k-d tree, partition
the search space on a dimension-by-dimension basis. One method of
doing this is to divide the domain into intervals of equal size. An
alternative method, which is usually superior, is to partition a dimen
sion so that there is an equal number of elements in each partition.
These methods are respectively examples of spatial partitioning
and data partitioning. Neither of these methods are ideal: spatial

DomainofX

Partition IDs

Domainof:x'

(Gray Codes)

000

2

001

3

011

4

111

FIGURE 2 The use of Gray codes to represent partitions of an element's domain.

100 B. J. BRIEDIS AND T. D. GEDEON

partitioning ignores the density of the data and data partitioning
ignores the distances between the points. It is to be noted that the
measure Var(Si-Ti) suffers from neither of these defects. While most
indexing techniques do not explicitly construct approximate vectors, it
is possible to interpret their behaviour in terms of vector approxima
tions. The act, for instance, of partitioning a data set into two parts
along one dimension can be equated to approximating the values in
that dimension by a 1 or a 2. It is possible, therefore, to modify many
indexing systems so that they construct partitions so as to minimise
Var(Si-T;) or Var(Si-c;Ti)- Doing so could lead to improvements in
performance, but this is yet to be tested.

7. OPTIMISING PARTITION BOUNDARY
POINTS BY DIMENSION

It is possible to optimise the approximations for a dimension i by
adjusting the partition boundary points and the values taken by X' so
as to minimise Var(Si-Ti). If possible it would be best to set these
parameters so that Var(Si-Ti) achieves its global minimum. No
technique for finding this minimum is known, so instead a heuristic
optimisation algorithm has been used.

In order to estimate Var(Si-Ti), a number of vectors (n) repre
senting items from the collection are drawn at random and paired with
randomly selected vectors representing queries. The elements of dimen
sion i from this sample are then used to calculate Si and Ti. Var(Si-Ti)
is then approximated by

[1 n] [1 n]2
- ~)si - t;)2 - - :~::)si - ti)
n i=l n i=l

(20)

If n is large then this is clearly a slow calculation to make. In order to
reduce the time spent calculating Var(Si-Ti) a simple random descent
algorithm was used (see Algorithm 1). Only one partition boundary
point was moved at a time, and each time only by a small step. The
value of Var(Si-TJ then only requires a small adjustment after each
move and does not need to be fully calculated. For /2 and a number of
other measures it is also possible to optimally set an approximation

APPROXIMATING VECTORS 101

value in near-constant time if the remaining parameters are fixed. Note
that as all the parameters are interdependent the approximation value
is optimal only with respect to the other current values of the other
parameters. It does not produce one of the parameters of the global
minimum of Var(S;- T;). Each time a partition boundary point or
approximation value is changed, several statistics used for calculating
Var(S;-T;) and the approximation values need to be updated. The
details of these updates are quite involved and have been omitted. A
number of other heuristic algorithms were tested, but all of these
required Var(S;-T;) to be fully calculated after each adjustment of the
parameters. The algorithm presented here clearly performed better
both in terms of speed and quality of results. To start with the
algorithm tries to move the partition boundary points by moderately
sized steps, and when no improvements can be found the size of the
steps is reduced. The approximation values are updated frequently to
take advantage of the fact that this update is a quick operation.

ALGORITHM 1 Optimisation algorithm for setting partition boundary
points and approximations using incremental update of statistics

Set all partition boundary points using data partitioning
Set all approximations to be the mid-way values between

boundary points

Calculate Var(S-T) and the statistics required for setting
approximation values.

for all partitions in random order do
Set an approximation value; update statistics

end for
CommonRadius= 1000 {For a sample size of 100000.}
while commonRadius > 0 do

radius= commonRadius
for all boundary points and both directions in random order do

while no improvement in Var(S-T) and radius> 0 do
Consider moving the boundary point in the given direction

by radius.

Calculate Var(S- T) for the prospective change.
if an improvement then

102 B. J. BRIEDIS AND T. D. GEDEON

Set the new partition boundary point; update statistics
for all partitions in random order do

Set approximation value, update statistics
end for

end if
radius= radius/2

end while
end for
if number of moved boundary partition points ::; 2 (or 1 for 4

partitions or fewer)

then
commonRadius = commonRadius /2

end if
end while

8. APPLICATION TO THE VA-FILE

The VA-file [41] is a file that contains one approximation for each of
the vectors in the collection. As the approximations require less
memory to store than the full vectors the VA-file is smaller than a file
that contains the full vectors, and is consequently quicker to search. In
the original version of the VA-file technique the scan of the VA-file
was the first of two stages. The first stage identified candidate vectors
(by considering the boundary points of each partition) and the second
stage searched through these candidates to find the closest vectors to
the query. This resulted in a complete search. The second stage does,
however, significantly increase the search time. The version of the
technique considered here only performs the first stage of the search,
and instead of a set of candidates, a set of approximate similarity
scores is produced. The resulting search is incomplete but faster than
the two-sfage search.

In order to create the VA-file, it is first necessary to partition the
domain of each of the dimensions. Weber [41] forms partitions that
contain equal numbers of elements. If approximation scores are to be
calculated then it is necessary that each partition have an associated
approximate value. Various values can be used, for example the
median value or the value midway between the partition boundaries.

APPROXIMATING VECTORS 103

Weber uses the lower bound of the partitions (assuming a distance
measure rather than a similarity measure) for ordering the candidates
for subsequent search.

An alternative to this approach is to set the partitions and
approximation value so as to minimise Var(S;-T;) for each dimension
i. Algorithm 1 may be used for this purpose. It is desirable also to
allow the dimensions to have different numbers of partitions, as this
allows for the more efficient use of memory. If the overall number of
bytes for a vector approximation is fixed then the number of partitions
may be assigned so as to minimise Var(S-T) overall. For simplicity it
is assumed that the number of partitions for each dimension is a power
of 2. This allows each element to be approximated by a few bits that
are kept independent of the other dimensions and thus simplifies the
encoding and decoding routines considerably. Algorithm 2 is used to
allocate the available bits between the dimensions. The allocation
process involves adding and removing bits from each dimension to
determine the relative effects of each on the measure Var(S-T). It is
necessary to call the program implementing Algorithm 1 many times
during this process, so consequently the process is quite slow. It was,
for instance, necessary to limit each dimension to a maximum of 8 bits
as it took too long to set the parameters if more bits were allocated. It
would be desirable to be able to predict the number of bits required for
each dimension by analysing the data distribution ahead of time. No
adequate method, however, has yet been found.

ALGORITHM 2 Allocate Bits
Assign bits evenly amongst elements
while finding improvements do

for i = l to d do
b = current number of bits assigned to dimension i
increase;= Varb(S;-T;)- Varb+ 1(S;-T;)
{Varb indicates the variance given b bits. increase and

decrease are lists.}

ifb>Othen
decrease;= Varb_ 1(S;-T;) Varb(S;-T;)

end if
end for
Sort increase into descending order

104 B. J. BRIEDIS AND T. D. GEDEON

Sort decrease into descending order
for= I to d do

if increase;> decrease; then
decrement the number of bits assigned to the dimension of

the decrease

increment the number of bits assigned to the dimension of
the increase

end if
end for

end while

9. RESULTS

9.1. Testing Error Dependency

In order to test the extent of the dependency of the error D on the
similarity score S (see Section 4), four simple experiments of the
following form were conducted. A set of tuples, both of whose elements
are vectors, was generated. The Euclidean distance (S) between each
pair of vectors was calculated. The domain of each of the dimensions of
the vectors was partitioned, and each partition assigned an approximate
value. The distance between the approximate vectors was calculated
(T). The error between each pair of vectors was then D = T - S. The
probability density function (PDF) of D was calculated for those vector
pairs whose values of Slay within the largest IO%, middle 10% and
smallest 10% of values. The PDFs for vectors of dimensionality 1 and
10 are shown in Figure 3. This procedure was followed for four data
sets: for I-dimensional uniformly distributed vectors, for IO-dimen
sional uniformly distributed vectors, for I-dimensional normally
distributed vectors, and for IO-dimensional normally distributed
vectors. The standard normal distribution was used to generate the
elements in each of the dimensions in the normal data sets. In the case
of the uniformly distributed data the partition boundary points were
placed at 0.125, 0.25, 0.375, 0.5, 0.625, 0.75 and 0.875, with the
approximation values of each of the partitions being placed at the
midway points between the partition boundary points (where O and 1
are treated as the endpoints of the end-most partitions). In the case of

20

15

-~

'!l 10
~
0.

5

0
-4 ·3

70

60

50

f 40
Jg
e 30
0.

20

10

0
·1

APPROXIMATING VECTORS 105

Sin smallest 10% -
S in middle 10% -------
S in largest 10% •·······

' I :
·2 ·1 2 3

D given constraint on S

Normal, 1 dim

Sinimallest10% -
S ir middle 1 0% ·••••••
S Ir largest 10% •·······

I ii\ /\ r,
•'

•0.5 0 0.5
O given constraint on S

Uniform, 1 dim

4

0.2 ~~~-~~-~~-~~

0.18

0.16

0.14

!f 0.12 I 0.1
rr, 0.08

-~ :g
~
0.

0.06

0.04 ,.

0.02 ~· _ ~; ~::-.-.. .. ,
o~~~~~~-~~~~~

0.6

0.5

0.4

0.3

0.2

0.1

·20 ·15 ·10 -5 0 5 10 15 20
D given constraint on S

Normal, 10 dims

'

........ /
-6 -4 ·2

D given constraint on S

Uniform, 10 dims

FIGURE 3 The PDFs of the error D given that the similarity Sis in the largest, middle
or smallest 10% of S values for 1-and IO-dimensional vectors respectively.

the normally distributed data the partition boundary points were placed
at by partitioning the domain of each element at the points -3, - 2, -1,
0, 1, 2 and 3, with the approximation values being -3.5, -2.5, - 1.5,
-0.5, 0.5, 1.5, 2.5 and 3.5. The partitioning was somewhat arbitrary in
both the uniform and normal cases, but it was designed to cover the data
fairly well. These graphs demonstrate that adding dimensions does
reduce the dependency of the error on the similarity. When there is only
one dimension there is a very strong dependency whereas when there are
10 the PDFs more closely resemble one another. Nonetheless some
dependency is clearly present and this will effect the performance of
Var(S-T) as a measure. The persistence of the dependency is prob
ably due to the strength of the dependency in the single dimension
case. The similarity measure used, which emphasises differences in
individual dimensions would also have an effect. The degree of
dependency that is evident for 10 dimensions does indicate that some
caution is needed when using Var(S-T) as a measure. It is possible
that even in a data set which has a very large number of dimensions, a

106 B. J. BRIEDIS AND T. D. GEDEON

few may dominate in their contribution to the overall similarity scores,
and to the error.

9.2. The Modified VA-File

In all of the tests presented here 100 queries were run on collections
consisting of 100 000 vectors. In each case the completeness is the
average percentage of the 10 items closest to the query that were
actually retrieved. Six different collections were used. The uniform data
set has 50 dimensions, with the data being uniformly distributed in a
hypercube. The normal data set has 50 dimensions, with the elements
in each dimension having a standard normal distribution. The mixed
data set has 50 dimensions, with each dimension being distributed
according to a different type of random distribution, and with the
queries having different distributions to the indexed vectors. The
AustLII data set is a 100-dimensional data set derived from perform
ing dimension reduction on a collection of legal documents. Finally
ColourHistRJ and ColourHistR5 are two data sets derived using
colour histograms from the same collection of images taken from the
Internet. The ColourHistRJ data set contains histograms for one
region and has 64 dimensions, whereas the ColourHistR5 data set
contains histograms for 5 regions and has 320 dimensions. The simi
larity measures used were the cosine measure (cos) and the Euclidean
distance (/2),

Table I compares the average completeness of the searches that
result when the dimensions are partitioned into equal parts with that
obtained by setting the parameters so as to minimise Var(S;-T;) for

TABLE I The average completeness when using data partitioning
and when minimising Var(Si-Ti). Each element has 16 partitions

Collection

Uniform (/2)
Uniform (cos)
Normal (/2)
Normal (cos)
Mixed (/2)

Mixed (cos)
AustLII (cos)
ColourHistRI (/2)

ColourHistRS (/2)

Data partitioning

82.4%
70.6%
32.1%
29.1%
41.5%
24.0%
31.1%
33.0%
42.6%

Error minimisation

82.2%
82.6%
74.1%
70.0%
74.7%
51.2%
32.5%
57.0%
69.3%

APPROXIMATING VECTORS 107

each dimension i. In the first case the values midway between the
boundaries of each partition were used as approximation values. The
outer boundary of an end-most partition is taken to be the minimum
or maximum of the values in the partition. In most cases optimising
Var(S;-T;) produced considerably better results. In the case that ran
against the trend, Uniform (/2), the difference was small and possibly
due to sampling error.

It is to be noted that in most cases in which both /2 and the cosine
measure were tested, performance was superior for /2• The reason for
this is not clear. One possibility, however, is that when /2 is used items
close to the centre of the query distribution are likely to be retrieved
regardless of the query. Using the cosine measure is effectively the
same as normalising the data, and normalising the data removes the
significance of the positioning of items relative to the origin. Thus
when the cosine measure is used there may be a larger number of
vectors that are close to the query and the task of distinguishing
between them is more difficult.

Using different numbers of partitions for each dimension may
improve the quality of retrieval. Table II contains the results of tests
that allow the number of partitions for each dimension to vary, and
these results are compared to the situation in which the number of
partitions is the same for each dimension. Algorithm 2 is used to
allocate the number of partitions to for each dimension. In both cases
the total number of bytes used to store a vector approximation was
f d/21, where d is the number of dimensions. A maximum of 256
partitions was imposed on the dimensions so as to limit the amount of
time required to optimise the parameters for each dimension. Only
those test sets that do not have identically distributed dimensions were
tested. As can be seen, allowing different numbers of bits to be

TABLE II The average completeness when fixing the number of partitions of each
dimension to 16 and when allowing the bits to be redistributed

Collection

Mixed (/2)

Mixed (cos)
AustLII (cos)
ColourHistRl (/2)

ColourHistR5 (/2)

Same number of partitions
for each dimension

74.7%
51.2%
32.5%
57.0%
69.3%

Varying number of
partitions

82.7%
58.7%
35.0%
82.2%
91.8%

108 B. J. BRIEDIS AND T. D. GEDEON

allocated to different dimensions results in improved performance in
all cases. Allocating the bits to each dimension is a slow process, and a
the faster technique would be desirable.

The figures for completeness presented in Tables I and II showed the
number of average of items amongst the 10 closest to the query that
were among the 10 items actually retrieved. In the results presented in
Table III the number of items amongst the closest 10 that appear in the
top 10, 20, 30, 40 and 50 items retrieved are presented. Each approxi
mation vector was allocated I d/21 bytes, with dimensions having
variable numbers of partitions. It is evident that if more than 10 items
are retrieved then the completeness of the search rapidly increases. In
most cases nearly all of the 10 items closest to the query are retrieved
within the top 50 items.

The effect of using different lengths of approximation vectors was
tested, and the results of these tests are presented in Table IV. The
number of partitions for each dimension was allowed to vary.

TABLE III The percentage of the 10 items closest to the query, given that the first 10,
20, 30, 40 and 50 items are retrieved

Collection 10/10 10/20 10/30 10/40 10/50

Uniform (/2) 82.8% 98.4% 100.0% 100.0% 100.0%
Uniform (cos) 82.8% 98.1% 99.7% 100.0% 100.0%
Normal (/2) 72.7% 91.6% 97.4% 99.2% 99.7%
Normal (cos) 71.9% 92.6% 97.9% 99.3% 99.7%
Mixed (/2) 82.7% 98% 99.9% 100.0% 100.0%
Mixed (cos) 58.7% 89.1% 98.0% 99.2% 99.9%
AustLII (cos) 35.0% 48.7% 55.1% 60.0% 63.9%
ColourHistRl (/2) 82.2% 97.5% 99.6% 99.9% 100.0%
ColourHistR5 (/2) 91.8% 99.5% 99.8% 100.0% 100.0%

TABLE IV The average completeness given different lengths of approximation vector

Average bits per element

Collection 2 3 4

Uniform (/2) 3.5% 34.8% 62.3% 82.8%
Uniform (cos) 5.2% 32.9% 60.2% 82.8%
Normal (12) 1.6% 20.0% 46.8% 72.7%
Normal (cos) 2.7% 18.7% 47.1% 71.9%
Mixed (12) 8.7% 44.9% 67.2% 82.7%
Mixed (cos) 16.4% 30.6% 42.2% 58.7%
AustLII (cos) 2.5% 15.0% 27.9% 35.0%
ColourHistRl (/2) 39.8% 62.3% 75.8% 82.2%
ColourHistR5 (12) 51.3% 72.5% 82.6% 91.8%

..

"

APPROXIMATING VECTORS 109

Approximation vectors that had an average of 1, 2, 3 and 4 bits per
dimension were tested. As would be expected, using longer vector
approximations increases the completeness in all cases. It appears that
in general 4 or more bits per dimension are required. It is to be noted
that fewer bits are required for ColourHistR5, with 320 dimensions,
than for Colour Hist RI, with 64 dimensions. The two are very similar
data sets, so this suggests that longer vectors require fewer bits in order
to achieve comparable levels of completeness.

10. CONCLUSION

A measure was presented which is suitable for judging the quality of
the approximations of vectors for use in similarity searching. One
assumption was made when deriving this measure. It was shown that
the assumption comes closer to being met as the dimensionality of the
vectors increases, so long as no dimensions dominate in their
contribution to the similarity scores. Given two further assumptions
regarding the independence of elements in different dimensions, the
measure may be used in constructing vector approximations for a
number of different indexing systems. The VA-file was selected as an
example of one application, and it was seen that when the measure was
used to construct the vector approximations, improved performance
was the result for a number of data sets.

Acknowledgements

This research was partly funded by an Australian Research Grant.
Thanks to Arthur Ramer and Graham Mann for their supervision of
the research presented here, and to Roger Weber who supplied the
data sets ColourHistRI and ColourHistR5.

References

[1] Agrawal, R., Lin, K., Sawhney, H. S. and Shim, K., Fast similarity search in the
presence of noise, scaling, and translation in time-series databases. In: Proceedings
of the 21st International Co,iference on Very Large Databases, pp. 490-501, Zurich,
Switzerland, Sept., 1995.

[2] Altschul, S. F., Gish, W., Miller, W., Myers, E.W. and Lipman, D. J., Basic local
alignment search tool. Journal of Molecular Biology, 215(3), 403-410, Oct., 1990.

110 B. J. BRIEDIS AND T. D. GEDEON

[3] Arya, S., Nearest Neighbour Searching and Applications. Ph.D. thesis, Computer
Vision Laboratory, Center for Automation Research, University of Maryland,
College Park, Maryland 20742-3275, June, 1995.

[4] Beis, J. S. and Lowe, D. G., Shape indexing using approximate nearest-neighbour
search in high-dimensional spaces. In: Conference on Computer Vision and Pattern
Recognition, pp. 1000-1006, Puerto Rico, June, 1997.

[SJ Bentley, J. L., Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9), 509-517, Sept., 1975.

[6] Berchtold, S. and Kriegel, H.-P., S3: Similarity search in CAD database systems.
In: Peckham [33], pp. 564-567.

[7] Berchtold, S., Bohm, C., Braunmiiller, B., Keim, D. A. and Kriegel, H.-P., Fast
parallel similarity search in multimedia databases. In: Peckham [33], pp. 1-12.

[8] Berchtold, S., Bohm, C., Jagadish, H. V., Kriegel, H.-P. and Sander, J.,
Independent quantization: An index compression technique for high-dimensional
data spaces. 16th International Conference on Data Engineering (IDCE), 2000.

[9] Berchtold, S., Bohm, C. and Kriegel, H.-P. (1998). The pyramid-technique:
Towards breaking the curse of dimensionality. In: Haas, L. M. and Tiwary, A.
Editors, Proceedings of the 1998 ACM S/GMOD International Conference on
Management of Data, 27(2) of S/GMOD Record, 142-153. ACM Press.

[10] Berchtold, S., Keim, D. and Kriegel, H.-P., The X-tree: An index structure for
high-dimensional data. In: 22nd Conference on Very Large Databases, pp. 28-39,
Bombay, India, 1996.

[11] Briedis, B. J. and Gedeon, T. D., A new approach to indexing in high-dimensional
space. Australian Computer Science Communications, 21(2), 1-12, Jan., 1999.
Database Systems 99. Proceedings of the /0th Australiasian Database Conference,
ADC'99.

[12] Chakrabarti, K. and Mehrotra, S., The hybrid tree: An index structure for high
dimensional feature spaces. In: Kitsuregawa, M., Maciaszek, L., Papazoglou, M.
and Pu, C. Editors, Proceedings Fifteenth International Conference on Data
Engineering, pp. 440-447, Sydney, Australia, Mar., 1999. IEEE Computer Society.

[13] Csillaghy, A. and Benz, A. 0., Interactive image retrieval in large astronomical
archives: the ASPECT system. Solar Physics, 188(1), 203-216, Aug., 1999.

[14] Dasarathy, B. V., Nearest Neighbor (NN) Norms: NN Pattern Classification
Techniques. IEEE Computer Society Press, Los Alamitos, California, 1991.

[15] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K. and Harshman, R.,
Indexing by latent semantic analysis. Journal of the American Society for
Information Science, 41(6), 391-407, Sept., 1990.

[16] Downs, G. M., Similarity searching and clustering of chemical-structure databases
using molecular property data. Journal of Chemical Information and Computer
Sciences, 34(5), 1094-1102, Sept./Oct., 1994.

[17] Faloutsos, C., Ranganathan, M. and Manolopoulos, Y. (1994). Fast subsequence
matching in time-series databases. In: Snodgrass, R. T. and Winslett, M. Editors,
Proceedings of the 1994 ACM SIG MOD International Conference on Management
of Data, 23(2) of SIGMOD Record, 419-429. ACM Press.

[18] Fayad, U. M., Piatetsky-Shapiro, G., Smyth, P. and Uthurusamy, R. Editors
(1996). Advances in Knowledge Discovery and Data Mining. AAAI Press/The MIT
Press, Boston.

[19] Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani,
M., Hafner, J., Lee, D., Petkovic, D., Steele, D. and Yanker, P. (1995). Query by
image and query content: The QBIC system. Computer, 28(9), 23-32.

[20] Friedman, J. H., Bently, J. L. and Finkel, R. A., An algorithm for finding best
matches in logarithmic expected time. ACM Transactions on Mathematical
Software, 3(3), 209-226, Sept., 1977.

[21] Furht, B., Smoliar, S. W. and Zhang, H., Video and Image Processing in Multimedia
Systems. Kluwer Academic Publishers, Boston, 1995.

,.

APPROXIMATING VECTORS 111

[22] Gaede, V. and Gunther, 0., Multidimensional access methods. Technical report,
Institute of Information Systems, Humboldt-Universitiit zu Berlin, Berlin, 1995.

[23] Gersho, A. and Gray, R. M., Vector Quantization and Signal Compression. Kluwer
Academic Publishers, Boston, 1992.

[24] Greene, R. L. (1994). Efficient retrieval from sparse associative memory. Artificial
Intelligence, 66, 395-410.

[25] Grother, P. J., Candela, G. T. and Blue, J. L., Fast implementations of nearest
neighbor classifiers. Pattern Recognition, 30(3), 459-465, Mar., 1997.

[26] Guenther, 0. and Buchmann, A., Research issues in spatial databases. SIGMOD
Record, 19(4), 61-68, Dec., 1990.

[27] Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching.
In: Yormack, B. Editor, SIGMOD'84, Proceedings of Annual Meeting, 14(2) of
SIGMOD Record, 47-57. ACM Press.

[28] Jagadish, H. V. (1991). A retrieval technique for similar shapes. In: Clifford, J.
and King, R. Editors, Proceedings of the 1991 ACM SIGMOD International
Conference on Management of Data, 20(2) of SIGMOD Record, 208-217. ACM
Press.

[29] K.anerva, P., Sparse Distributed Memory. The MIT Press, Cambridge, Massachu
setts, 1988.

[30] Korn, F., Sidiropolos, N., Faloutsos, C., Siegel, E. and Protopapas, Z., Fast
nearest neighbor search in medical image databases. In: Vijayaraman, T. M.,
Buchmann, A. P., Mohan, C. and Sarda, N. L. Editors, VLDB'96, Proceedings of
22th International Conference on Very Large Data Bases, September 3-6, 1996,
Mumbai (Bombay), India, pp. 215-226. Morgan Kanfmann, 1996.

[31] Kurniawati, R., Jin, J. S. and Shepherd, J. A., The SS+-tree: An improved
index structure for similarity searches in a high-dimensional feature space.
In: SPIE Storage and Retrieval for Image and Video Databases V, San Jose CA,
Feb., 1997.

[32] Lin, K.-1., Jagadish, H. V. and Faloutsos, C., The TV-tree: An index structure for
high-dimensional data. VLDB Journal, 3(4), 517-549, Oct., 1994.

[33] Peckham, J. Editor. Proceedings of the 1997 ACM SIGMOD International
Conference on Management of Data, 26(2) of SIGMOD Record. ACM Press,
1997. 13-15 May, Tucson, Arizona.

[34] Salton, G., Automatic Text Processing: The Transformation Analysis and Retrieval
of Information by Computer. Addison-Wesley Publishing Company, Reading,
Massachusetts, 1989.

[35] Salton, G., Wong, A. and Yang, C. S., A vector space model for automatic
indexing. Communications of the ACM, 18(11), 613-620, Nov., 1975.

[36] Samet, H., The Design and Analysis of Spatial Data Structures. Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts, 1990.

[37] Shepherd, J., Zhu, X. and Megiddo, N., A fast indexing method for multi
dimensional nearest neighbour search. In: SPIE Conference on Storage and
Retrieval for Image and Video Databases VI, Jan., 1999. San Jose, California.

[38] Silverman, B. W., Density Estimation for Statistics and Data Analysis. Chapman &
Hall/CRC, Boca Raton, Florida, 1992.

[39] Subrahmanian, V. S. and Jajodia, S., Editors. Multimedia Database Systems: Issues
and Research Directions. Springer, Berlin, 1996.

[40] Turk, M. and Pentland, A., Eigenfaces for recognition. Journal of Cognitive Neuro
science, 3(1), 71-86, Winter, 1991.

[41] Weber, R., Schek, H.-J. and Blott, S., A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces. In: Proceedings of
the 24th VLDB Conference, New York, USA, 1998.

[42] White, D. A. and Jain, R., Similarity indexing with the SS-tree. In: Proc. 12th
IEEE International Conference on Data Engineering, New Orleans, LA, Feb.,
1996.

112 B. J. BRIEDIS AND T. D. GEDEON

[43] Wu, C., Berry, M., Shivakumar, S. and McLarty, J. (1995). Neural networks for
full-scale protein sequence classification: Sequence encoding with singular value
decomposition. Machine Learning, 21, 177-193.

[44] Yang, Y. and Chute, C. G., An example-based mapping method for text
categorization and retrieval. ACM Transactions on Information Systems, 12(3),
252-277, July, 1994.

[45] Zakarauskas, P. and Ozard, J. M., Complexity analysis for partitioning nearest
neighbor searching algorithms. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 18(6), 663-668, June, 1996.

